
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 311 (2008) 421–439

www.elsevier.com/locate/jsvi
Probabilistic collocation for period-1 limit cycle oscillations

Jeroen A.S. Witteveen�, Alex Loeven, Sunetra Sarkar, Hester Bijl

Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

Received 16 May 2007; received in revised form 7 September 2007; accepted 18 September 2007

Available online 24 October 2007
Abstract

In this paper probabilistic collocation for limit cycle oscillations (PCLCO) is proposed. Probabilistic collocation (PC) is

a non-intrusive approach to compute the polynomial chaos description of uncertainty numerically. Polynomial chaos can

require impractical high orders to approximate long-term time integration problems, due to the fast increase of required

polynomial chaos order with time. PCLCO is a PC formulation for modeling the long-term stochastic behavior of

dynamical systems exhibiting a periodic response, i.e. a limit cycle oscillation (LCO). In the PC method deterministic time

series are computed at collocation points in probability space. In PCLCO, PC is applied to a time-independent

parametrization of the periodic response of the deterministic solves instead of to the time-dependent functions themselves.

Due to the time-independent parametrization the accuracy of PCLCO is independent of time. The approach is applied to

period-1 oscillations with one main frequency subject to a random parameter. Numerical results are presented for the

harmonic oscillator, a two-dof airfoil flutter model and the fluid-structure interaction of an elastically mounted cylinder.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decades the increase of computer power has resulted in a significant increase of the accuracy of
numerical simulations. Compared to the reduced numerical errors, the effects of uncertainty in the input data
of the computational analysis are nowadays relatively large. The uncertain input data itself can be obtained as
system output response of experiments or preceding analysis. It is important to model these uncertainties to
further increase the confidence in numerical predictions. This is especially true for the effects of input
uncertainty on the long-term behavior of dynamical systems. It is known that nonlinear dynamical systems
can be sensitive to input variability [1]. The amplification of input variability in dynamical systems is of
interest to engineers in, for example, flutter analysis.

Parametric uncertainty given by a random variable, which can be described using a polynomial chaos
expansion, is considered in this work. This description of uncertainty is relevant in many practical applications
involving parametric uncertainty. The polynomial chaos expansion is a polynomial expansion of the response
in terms of independent random variables and deterministic coefficients [2,3]. Polynomial chaos is based on the
homogeneous chaos theory of Wiener [4]. The deterministic coefficients can be solved for numerically by
applying the stochastic Galerkin method [2,5] or the probabilistic collocation (PC) method [6,7].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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In the stochastic Galerkin method [2,5] the basis polynomials are orthogonal with respect to the input
probability density. The Galerkin projection in probability space results in a coupled system of deterministic
equations. For Gaussian random variables the stochastic Galerkin method has been developed by Ghanem
and Spanos [2]. It has been extended to other standard distributions in the generalized polynomial chaos by
Xiu and Karniadakis [3] and arbitrary probability measures [5,8,9]. Multi-element polynomial chaos methods
have also been developed [10–12]. Several non-polynomial-based stochastic expansions have also been
proposed, e.g. the Wiener–Haar expansion by Le Maı̂tre et al. [13] and the Fourier Chaos expansion by
Millman et al. [14].

A relatively new method to solve for the polynomial chaos coefficients is the PC method [6,7]. In PC the
uncertainty quantification problem is collocated in Gauss points in probability space. The suitable Gauss
points are the zeros of polynomials orthogonal with respect to the probability density of the uncertain input.
The basis polynomials are the Lagrange polynomials based on the collocation points in probability space. PC
leads to a non-intrusive approach in which uncoupled deterministic problems are solved for various parameter
values as in Monte Carlo (MC) simulations. It has recently been applied successfully to several problems, see
for example [6,7,15–18]. In Ref. [6] exponential convergence of the PC method has been proven under
moderate assumptions on the input data. It has also been demonstrated that the PC method can be seen as a
generalization of the stochastic Galerkin method [2,5].

The polynomial chaos representation, both in the combination with the stochastic Galerkin method and the
PC method, has been applied to several time-dependent problems in [1,19–22]. It has been reported that the
polynomial chaos expansion works effectively for many problems, however, it can have difficulty to
approximate long-term time integration problems involving random frequencies [21]. In time-dependent
problems the required polynomial chaos order to maintain an acceptable accuracy can increase rapidly with
time. In a multi-element approaches the same holds for the increase of the number of elements in time [12].
The polynomial chaos description can therefore require an impractical high order to approximate long-term
time integration problems. Furthermore, polynomial chaos approximations both in combination with the
stochastic Galerkin method and the PC method can fail asymptotically.

The long-term periodic behavior of time-dependent problems is important in the flutter analysis of
aeroelastic systems. Flutter is the loss of dynamical stability at a critical dynamic pressure to a time
periodic instability that can grow in an unbounded fashion [23]. The instability can lead to catastrophic
failure with no periodic motion ever safely reached. Nonlinear systems can exhibit a stable periodic
response beyond the flutter point which is known as a limit cycle oscillation (LCO). Here, cases of mild
flutter are considered where the limit cycle levels are not destructive. At the flutter point the response
usually bifurcates from a damped response to a period-1 oscillation. In practice LCO of aeroelastic systems is
of interest to engineers, since it can lead to fatigue failure of the wing structure [14]. It is known that
the existence of LCO depends on input variations [20]. The properties of LCO are sensitive to para-
metric uncertainty [1] in wing structure, store mass and alignment, dynamic pressure, load factors, etc [14].
Therefore, the complete analysis of LCO should include the quantification of the effects of physical input
uncertainty.

Although LCO in aeroelastic systems is an active field of research, probabilistic studies of aeroelastic
stability are relatively new. Liaw and Yang [24] employed a perturbation approach to examine the aeroelastic
behavior of laminated plates and shells subject to structural and geometric uncertainties. Lindsley [25] studied
LCO of panels with uncertain modulus of elasticity and thermal expansion coefficient using MC simulation. In
Ref. [14] the Fourier chaos expansion is proposed to determine the dynamic response of aeroelastic systems.
Wiener–Haar expansions were compared to polynomial chaos expansions for representing the stochastic
response of nonlinear aeroelastic systems by Pettit and Beran [20]. They reported that polynomial chaos
expansions have difficulty modeling long-term stochastic limit cycle oscillations, because of energy loss after
several mean periods of oscillation. The loss of energy remains even for very high-order polynomial chaos
expansions, but seems to be less for Wiener–Haar expansions [13,20]. A stall flutter model subject to structural
uncertainties is studied in Ref. [26].

Frequency domain methods, e.g. incremental harmonic balance, have been considered for solving linear
stochastic operator equations using polynomial chaos expansions [27]. These methods have the advantage that
the accuracy of their long-term approximation of periodic solutions can be superior to that of time marching
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schemes. The time integration scheme can significantly influence the accuracy of the long-term approximation
of stable periodic solutions, as demonstrated in for example [28].

In this paper a PC formulation for modeling the long-term stochastic behavior of LCOs in linear and
nonlinear problems is proposed. The idea is to apply PC to a time-independent parametrization of the
response instead of to the time-dependent response itself. Due to the time-independent parametrization the
accuracy of the PCLCO approximation is independent of time, which enables it to resolve the long-term
stochastic behavior of dynamical systems. In practice the error can slightly increase with time due to numerical
integration errors. For LCOs a suitable parametrization of the periodic response consists of the frequency, the
relative phase, the amplitude, a reference value and the normalized period. A PC approach is employed since it
can approximate these functionals of the response more effectively than a stochastic Galerkin method.

The functionals of the response are independent of time, such that the polynomial chaos order of their
approximation is time independent, even though a polynomial chaos approximation of the response itself
would require a fast increasing order with time. These functionals therefore require a lower order of
approximation after sufficiently long-term time integration. Furthermore, these functionals require a relatively
low degree, if they are smooth functions of the response. It is demonstrated in the test problems that this can
often be the case. In this work, it is assumed that the functionals are smooth functions of the response and that
the polynomial approximation of the PC method is appropriate. PCLCO can be seen as an alternative post-
processing for PC, since they both employ the same uncoupled deterministic solves at the collocation points in
probability space. Research questions about PC itself concerning the global polynomial approximation of
non-smooth functionals and the analysis of its numerical errors are outside the scope of this paper. For an
error analysis of the PC method is referred to Ref. [6]. It is remarked, however, that by using the non-intrusive
PC approach, the polynomial chaos expansion has no influence on the error in the long-term behavior of the
deterministic samples.

In flutter analysis one is usually interested in the effect of uncertainty on the bifurcation point from a
damped response to a LCO. At the flutter point the damped response often changes to a period-1 oscillation
with one main frequency. An initial quantification of the effect of uncertainty usually focuses on the effect of
individual parameters. The application of the current formulation of PCLCO is therefore limited to period-1
LCOs with one main frequency subject to one uncertain parameter. It is assumed that these oscillations exist in
the relevant parameter domain. The extension of the approach to more complex dynamical systems needs
further attention.

In practical applications it might not be trivial to ensure a priori that periodic solutions exist for the
relevant input parameter range. It is therefore determined a posteriori whether the deterministic samples are
periodic. The response is considered to be periodic, if after sufficiently long integration time, tmax, the response
results within a threshold value in identical orbits in phase-space. The effect of the threshold on the
approximation with PCLCO at tmax is small, since the parametrization is extracted from the last full period
before tmax. If all samples have a periodic response, then PCLCO post-processing is applied to the samples.
Otherwise normal PC post-processing applied, since both PCLCO and PC are based on the same deterministic
samples.

A harmonic oscillator problem with an uncertain spring stiffness is considered to demonstrate that PCLCO
is able of capturing the long-term stochastic behavior of LCOs successfully. This model problem, which is
similar to the sinusoidal model problem studied by Pettit and Beran [20], does not involve a transient part in
the deterministic response. An error convergence study up to a polynomial chaos order of 8 is performed.
Subsequently, PCLCO is applied to other engineering applications involving periodic response. A two-dof
airfoil flutter model is considered subject to uncertainty in the structure. This problem is used to study the
effect of a deterministic transient behavior on the PCLCO approach. Finally, a combination of PCLCO and
PC is employed to propagate the uncertainty through a fluid-structure interaction simulation of an elastically
mounted cylinder with an uncertain free stream velocity. In that case, PC is applied for short-term integration
in the transient part of the deterministic time series. The stochastic transient behavior and the long-term
stochastic response are resolved using PCLCO.

The PC approach for LCOs is introduced in Section 2. Numerical results are presented for the harmonic
oscillator, the airfoil flutter model and the elastically mounted cylinder in Section 3. The paper is concluded in
Section 4.
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2. Probabilistic collocation for limit cycle oscillations

In this section, the PC method for LCOs is introduced. It is based on the time-independent parameterization
of LCOs given in Section 2.2. First the general PC framework is briefly reviewed in Section 2.1.

2.1. Probabilistic collocation method

PC is based on collocating the stochastic problem in Gauss quadrature points in the probability space [6,7].
Suitable Gauss points are the zeros of polynomials orthogonal with respect to the probability density of the
uncertain input. The stochastic moments of the output are computed by Gauss quadrature based on a
polynomial approximation of the response and a polynomial chaos description of the probability distribution.

A differential equation is considered subject to parametric input uncertainty with a probabilistic
description:

LðaÞu ¼ 0, (1)

with operator L in domain D � Rd � T , d ¼ f1; 2; 3g, T ¼ ½0; tmax� and uncertain input parameter aðoÞ with
o 2 O. The set of outcomes of the probability space (O, F, P) is denoted by O, F � 2O is the s-algebra of
events and P is a probability measure. The uncertain variable uðx; t;oÞ, with x 2 Rd and t 2 T , is then
approximated in the PC method as

uðx; t;oÞ ¼
XN

k¼1

ukðx; tÞlkðaðoÞÞ, (2)

where N is the number of collocation points fakg
N
k¼1 in probability space and N � 1 is the polynomial chaos

order of approximation (2). The collocation points fakg
N
k¼1 are the zeros of the polynomial pNþ1ðaÞ, where

fpiðaÞg
Nþ1
i¼0 is the set of polynomials up to order N þ 1 orthogonal with respect to the probability density

function paðaÞ of the uncertain input parameter aðoÞ. The polynomials fpiðaÞg
Nþ1
i¼0 are given by the

orthogonality relation

hpiðaÞpjðaÞi ¼

Z
piðaÞpjðaÞpaðaÞda ¼ hpiðaÞ

2
idij , (3)

for i; j ¼ 1; . . . ;N þ 1, where h:i denotes an inner product. For several standard input distributions the
polynomials fpiðaÞg

Nþ1
i¼0 in Eq. (3) are (scaled) classical polynomials [29] of which the roots are tabulated to full

accuracy. For other input distributions the collocation points can be computed numerically [7].
The deterministic coefficients fukðx; tÞg

N
k¼1 in Eq. (2) are then the deterministic solutions of Eq. (1) for the

parameter values fakg
N
k¼1. The basis polynomials flkðaÞg

N
k¼1 of expansion (2) are Lagrange polynomials with

respect to the collocation points fakg
N
k¼1 for which holds

lkðajÞ ¼ djk; j; k ¼ 1; . . . ;N, (4)

where djk is the Kronecker delta. The mean muðx; tÞ and variance s2uðx; tÞ of the solution uðx; t;oÞ are computed
using Gauss quadrature integration based on the quadrature points fakg

N
k¼1, for example,

muðx; tÞ ¼
XN

k¼1

wkukðx; tÞ, (5)

where wk are Gauss quadrature weights. Multidimensional collocation points can be obtained from tensor
products of the one-dimensional collocation points or a sparse grid approach [18].

2.2. Time-independent parametrization of limit cycle oscillations

In long-term time integration of unsteady problems subject to uncertainty the uncertainty response surface
uðx; t;oÞ can be a highly nonlinear function of the uncertain input parameter aðoÞ [20]. In that case, the global
polynomial representation in the polynomial chaos description is not adequate for approximating the response
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surface. Increasing the polynomial chaos order in PC or the number of elements in the multielement
generalized polynomial chaos extends the valid integration time [12]. However, the polynomial chaos
approximation fails asymptotically due to the growing nonlinearity of the response surface in time.

The long-term periodic response uðx; t;oÞ can be parametrized by a vector of time-independent parameters
zðx;oÞ than time t. For a periodic response zðx;oÞ can consist of the frequency, the relative phase, the
amplitude, a reference value and the normalized period. This results in a time-independent parametrization of
the periodic response uperiodicðx; zðx;oÞ;oÞ. PC can then be applied to the parametrization zðx;oÞ instead of the
time-dependent response uðx; t;oÞ itself. The realizations of the parametrization zkðx;oÞ are extracted from the
same time series ukðx; t;oÞ as in PC obtained from solving Eq. (1) at the collocation points fakg

N
k¼1. This

enables the use of existing deterministic time integration solvers. The accuracy of the polynomial chaos
approximation of the parametrization zðx;oÞ:

zðx;oÞ ¼
XN

k¼1

zkðxÞlkðaðoÞÞ (6)

is then independent of time t. If the parametrization zðx;oÞ depends not too nonlinearly on the uncertain input
parameter aðoÞ, the polynomial chaos order of the approximation of the long-term behavior can be relatively
low. The PCLCO approximation of the response uðx; t;oÞ is given by substitution of (6) into a parametrized
description of the response. This formulation of PC for LCOs is capable of resolving the effect of the uncertain
input parameter aðoÞ on the long-term stochastic response.

As mentioned before, a suitable time-independent parametrization of the asymptotic periodic response of
LCOs is a parametrization in terms of the frequency f ðx;oÞ, the relative phase fðx;oÞ, the amplitude Aðx;oÞ,
a reference value u0ðx;oÞ and the normalized period uperiodðx; t;oÞ, with t 2 ½0; 2p�. The time series ukðx; t;oÞ
for the N collocation points fakg

N
k¼1 in probability space result in N realizations of the frequency f kðxÞ, the

phase fkðxÞ, the amplitude AkðxÞ, the reference value u0k
ðxÞ and the normalized period uperiodk

ðx; tÞ of the
periodic response:
�
 the frequency f kðxÞ is defined as the inverse of the period length, which is the smallest time tperiodk
ðxÞ40 for

which holds in the asymptotic region ukðx; tþ tperiodk
ðxÞÞ ¼ ukðx; tÞ;
�
 The relative phase fkðxÞ of the time series is defined as the phase of the oscillation at t ¼ tmax with respect to
the time of the latest maximum tumaxk

ðxÞ by fkðxÞ ¼ nperiodsk
ðxÞ þ ðtmax � tumaxk

ðxÞÞf kðxÞ with nperiodsk
ðxÞ the

integer number of completed cycles;

�
 The amplitude AkðxÞ is equal to half the difference between the minimum and the maximum of the period

AkðxÞ ¼
1
2
ðumaxk

ðxÞ � umink
ðxÞÞ;
�
 the reference value u0k
ðxÞ is chosen to be the average of the minimum and maximum of the period

u0k
¼ 1

2
ðumink

ðxÞ þ umaxk
ðxÞÞ.

This parametrization is obtained from the last full period of the simulation after establishing a sufficiently
long-integration time for the development of the periodic oscillation, see Fig. 1. The polynomial chaos
approximation of the parametrization f ðx;oÞ, fðx;oÞ, Aðx;oÞ and u0ðx;oÞ is then determined using Eq. (6).
The PCLCO approximation of the response is given by substituting Eq. (6) into the parametrized description
of the response given by

uðx; t;oÞ ¼ u0ðx;oÞ þ Aðx;oÞuperiodðx; tðx;oÞ;oÞ (7)
t0

tperiod

tmax

tumax

u0

u

t

2A

Fig. 1. Definition of parameters to describe limit cycle oscillation in PCLCO.
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with tðx;oÞ ¼ 2pðfðx;oÞ þ ðt� tmaxÞf ðx;oÞÞ ðmod2pÞ. This results in a non-polynomial response surface
approximation. For this expression also an expansion of the normalized period uperiodðx; t;oÞ similar to Eq. (6)
is required. The shape of the period of the deterministic time series u0periodk

ðx; t0kðxÞÞ with t0kðxÞ ¼ ½0; tperiodk
ðxÞ� is

extracted from the last full period of the functions ukðx; tÞ. The normalized period uperiodk
ðx; tÞ, with t 2 ½0; 2p�, is

obtained by scaling the periods u0periodk
ðx; t0kðxÞÞ by their frequency f kðxÞ, amplitude AkðxÞ and equilibrium u0k

ðxÞ

uperiodk
ðx; tÞ ¼

1

AkðxÞ
u0periodk

x;
t

2pf kðxÞ

� �
� u0k

ðxÞ

� �
(8)

with k ¼ 1; . . . ;N and t 2 ½0; 2p�. The polynomial chaos approximation of uperiodðx; t;oÞ based on the
representations uperiodk

ðx; tÞ is given by

uperiodðx; t;oÞ ¼
XN

k¼1

uperiodk
ðx; tÞlkðaðoÞÞ. (9)

In practice uperiodðx; t;oÞ is determined at nt discrete angles ftjg
nt
j¼1 2 ½0; 2p� and interpolation can be employed

to obtain uperiodðx; t;oÞ from fuperiodðx; tj ;oÞg
nt
j¼1. One could also use a Fourier transform to discretize the

normalized period. In pseudo-algorithmic form PCLCO can be represented as follows:
(1)
 solve N deterministic problems for the parameter values corresponding to the N collocation points in
probability space;
(2)
 extract f kðxÞ, fkðxÞ, AkðxÞ, u0k
ðxÞ, and uperiodk

ðx; tÞ for k ¼ 1; . . . ;N from the N deterministic solutions;

(3)
 construct the global polynomial approximations f ðx;oÞ, fðx;oÞ, Aðx;oÞ, u0ðx;oÞ, and uperiodðx; t;oÞ using

(6) and (9);

(4)
 substitute f ðx;oÞ, fðx;oÞ, Aðx;oÞ, u0ðx;oÞ, and uperiodðx; t;oÞ into (7)to find the approximation of the

response uðx; t;oÞ.
The mean and variance of the response uðx; t;oÞ are determined by numerically integrating of the response
surface (7). The distribution function is given by sorting the function u–o, with o 2 ½0; 1�, to a monotonically
increasing reconstruction.

3. Numerical results

In this section numerical results of PCLCO are presented for the analytical harmonic oscillator problem, a
two-degrees-of-freedom airfoil flutter model and a fluid-structure interaction simulation of an elastically
mounted cylinder. The results are compared to those of PC see Section 2.1, and MC simulations.

3.1. Harmonic oscillator

The analytical harmonic oscillator problem with an uncertain spring stiffness is considered to demonstrate
the properties of PCLCO for a problem with no transient part in the deterministic response. PCLCO is
compared to PC in an error convergence study with respect to an MC reference solution. The motion of the
harmonic oscillator is described by

m
q2xðt;oÞ

qt2
þ kðoÞxðt;oÞ ¼ 0; t 2 ½0;1Þ, (10)

with deterministic initial conditions xð0Þ ¼ ~x0 ¼ 1 and ðqx=qtÞð0Þ ¼ ~x1 ¼ 1, mass m ¼ 1 and uncertain spring
stiffness kðoÞ with a lognormal distribution with mean mk ¼ 1 and coefficient of variation CVk ¼ 10%. The
analytical solution of Eq. (10) can be written as

xðt;oÞ ¼ x0ðoÞ þ AðoÞ cosð2pf ðoÞtþ fðoÞÞ, (11)

with frequency f ðoÞ ¼ ð1=2pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðoÞ=m

p
, phase tanf ¼ ~x1= ~x0

ffiffiffiffiffiffiffiffiffi
k=m

p
, amplitude A ¼ ~x0= cosf and reference

value x0ðoÞ ¼ 0. The response xðt;oÞ given by Eq. (11) is a periodic function of time with no transient part.
The solution is considered until tmax ¼ 100 which corresponds to approximately 16 periods for mk.
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PCLCO is employed with three collocation points fkig
N
i¼1, with N ¼ 3, for the uncertain parameter kðoÞ.

The time series xiðtÞ are parametrized by f i, fi, Ai and x0i
. For this simple model problem the scaled periodic

motion xperiodðt;oÞ is independent of o since xperiodðt;oÞ ¼ cosðtÞ with t 2 ½0; 2p�. The parametrization
describes the time series xiðtÞ for t40 exactly.

In Fig. 2 the three samples fxiðtÞg
N
i¼1 are shown. The periodic responses start at the deterministic initial

condition without transient behavior. The uncertainty affects the amplitude and the frequency of the response
a. The effect on the frequency results in an increasing phase difference between the time series. The functions
diverge from each other in time, since the frequency and amplitude of the time series depend on the sample
value ki.

The mean mxðtÞ and the variance s2xðtÞ of the response xðt;oÞ are shown in Fig. 3 as function of time t. The
approximations of PCLCO and PC for N ¼ 3 are compared to a MC simulation with 1000 uniformly
distributed samples. In contrast to the periodic deterministic solutions, the MC solution for the mean mxðtÞ is a
damped oscillation, see Fig. 3a. The decaying oscillation is caused by the effect of the uncertainty on the
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Fig. 2. The three-deterministic realizations at the collocation points for the harmonic oscillator.
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Fig. 3. Response of the harmonic oscillator by Monte Carlo (MC), PCLCO and probabilistic collocation (PC): (a) mean and (b) variance.
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frequency of the time series. Due to the increasing phase difference in time, time series with opposite signs
increasingly cancel each other.

The result of PCLCO is indistinguishable from the MC result for all times t 2 ½0; tmax�. The PC
approximation of the mean is accurate up to approximately t ¼ 25. For later times the error of the PC
approximation rises to unacceptable levels. Using a higher polynomial chaos order or a multielement
approach elongates the domain in which the approximation is accurate. However, without continuously
increasing the order the approximation would fail asymptotically for long-term integration at some t [20,21].

The variance s2xðtÞ shows a transient oscillatory behavior until it damps to the steady value of s2xðtÞ ¼ 1:0 for
t450, see Fig. 3b. Although the samples shown in Fig. 2 do not exhibit transient behavior and are unsteady
for all t, the stochastic solution has a transient behavior due to the deterministic initial condition and reaches a
steady solution for long-term integration. PCLCO resolves both the transient and the asymptotic stochastic
solution as the results of MC and PCLCO are indistinguishable also for the variance. The accuracy of PC
deteriorates for the variance at approximately t ¼ 15 which is earlier than for the mean. PC is unable to
predict the asymptotic steady solution of the variance which results in large errors.

The reason that PCLCO accurately approximates the long-term stochastic behavior already with N ¼ 3 is
that in PCLCO the polynomial approximation of PC is not applied to the response in terms of the time series
xiðtÞ directly, but to the parametrization f i, fi and Ai. This parametrization of the periodic response is
independent of time which enables for an approximation of the asymptotic behavior. In addition, the
parametrization f ðoÞ, fðoÞ and AðoÞ depends almost linearly on the uncertain input parameter kðoÞ which
results in an accurate approximation with N ¼ 3.

In Fig. 4 the approximation of the frequency f ðoÞ is given in terms of its response surface with respect to
kðoÞ and its probability distribution function. The comparison of the PCLCO approximation and the MC
results in Fig. 4a shows that the frequency f ðoÞ depends almost linearly on kðoÞ. The polynomial PCLCO
approximation based on the collocation points results for N ¼ 3 in an adequate approximation of the
frequency response surface. Therefore, also the probability distribution function of the frequency is accurately
resolved, see Fig. 4b. Similar results are obtained for the phase fðoÞ and amplitude AðoÞ.

Based on the time-independent approximations of f ðoÞ, fðoÞ, and AðoÞ, the analytical solution (11) gives
the time-dependent approximation of xðt;oÞ. In Fig. 5 the approximations of the response surface xðt;oÞ–kðoÞ
and the probability distribution of xðt;oÞ are given for t ¼ f1; 20; 100g for MC, PCLCO and PC. The response
surface is almost linear after short-term integration, see Fig. 5a. For this case both PCLCO and PC result in
accurate approximations of the response surface at t ¼ 1. This time interval corresponds to approximately
0:16 periods for mk. The approximation of the probability distribution of xðt;oÞ at t ¼ 1 is also accurate
in Fig. 5b.
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After long-term integration the response surface is increasingly nonlinear, see Figs. 5c and e for the results at
t ¼ 20 and 100, which corresponds to approximately 3:2 and 16 periods for mk, respectively. The PCLCO
approximation based on the three collocation points and the parametrization (11) maintains a similar
accuracy in the approximation of the response surface independent of the time t. The polynomial
approximation of PC through the three collocation points is clearly not adequate to represent the increasingly
nonlinear response surface. In Figs. 5d and f the probability distribution of xðt;oÞ after long-term integration
is shown for t ¼ 20 and 100. The probability distribution function reaches a steady solution asymptotically.
PCLCO resolves the detailed features of the probability distribution function also near x ¼ �0:5 for all
times t 2 ½0; tmax�.

An error convergence study is performed to compare the accuracy of PCLCO and PC for a range of
polynomial chaos orders up to N ¼ 9 at different times t, see Fig. 6. The convergence study focuses on the
contribution of the polynomial chaos expansion to the error in the long-term behavior of the stochastic
system, since in this analytical test problem numerical time integration errors are absent. The time-averaged
L1-errors in the approximation of the mean and the variance in different time intervals are considered.
In Fig. 6a the error convergence of PCLCO and PC up to t ¼ 1 is shown for the error in the mean mxðtÞ. PC
results for this short-term integration problem in fast exponential convergence which reaches machine
precision for N ¼ 7. PCLCO convergences three orders of magnitude to an error lower than 10�6 at N ¼ 9.

In Fig. 6c the error convergence for the mean at t ¼ 20 is shown. PCLCO convergences again to an error
lower than 10�6 for N ¼ 9. PC convergences significantly slower than for the t ¼ 1 case to an error of 10�3,
which is higher than for PCLCO. This is also demonstrated by the error convergence of the mean for t ¼ 100
in Fig. 6e, for which PC hardly convergences, but PCLCO still convergences beyond an error of 10�6 for
N ¼ 9. In Figs. 6b, d and f similar results are shown for the error in the approximation of the variance at
t ¼ 1, 20, and 100.

To demonstrate that the accuracy of PCLCO is nearly independent of time, the errors in the approximation
of the mean and the variance of PCLCO and PC are given as function of time in Fig. 7 for N ¼ 1, 5, and 9.
For N ¼ 1 both PCLCO and PC reduce to a deterministic solve for the mean value of the uncertain input
parameter mk. For higher polynomial chaos orders N ¼ 5 and 9 PCLCO results in a error which is nearly
constant in time and decreases for increasing N. The error in the approximation of the variance even decreases
with time for short-term integration to20, see Fig. 7b. The accuracy of PC depends strongly on time. For
long-term integration the error in the PC approximation even increases with an increasing polynomial chaos
order. The post-processing of the samples is in PCLCO computationally more intensive than in PC. However,
the computational costs in engineering applications are dominated by computing the deterministic samples.
The number of samples in the PCLCO computation is over a factor 102 smaller than in the MC simulation.

3.2. 2 dof flutter model

In this section PCLCO is applied to a relevant model for flutter analysis. Flutter models are often used
instead of full unsteady fluid-structure interaction simulations. Here a two-dof model for the pitch and plunge
motion of an airfoil, see Fig. 8, is used which was studied deterministically for example by Lee et al. [30] and
stochastically using Fourier chaos by Millman et al. [14]. The aeroelastic equations of motion with cubic
restoring springs in both pitch and plunge are given in Ref. [30] as

x00 þ xaa00 þ 2zx
ō

U�
x0 þ

ō
U�

� �2

ðxþ bxx
3
Þ ¼ �

1

pm
CLðtÞ, (12)

xa

r2a
x00 þ a00 þ 2

za
U�

a0 þ
1

U�2
ðaþ baa

3Þ ¼
2

pmr2a
CM ðtÞ, (13)

where a is the pitch angle, x ¼ h=b is the non-dimensional plunge displacement of the elastic axis, with b ¼ c=2
the half-chord, bx and ba are the nonlinear spring constants, ra is the radius of gyration about the elastic axis,
and zx and za are the viscous damping coefficients in plunge and pitch, respectively. The ratio of natural
frequencies is ō ¼ ox=oa, where ox and oa are the natural frequencies of the uncoupled plunging and pitching
modes, respectively. The bifurcation parameter is defined as U� ¼ U=ðboaÞ. The non-dimensionalized time is
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Fig. 6. Error convergence of PCLCO and probabilistic collocation (PC) for the mean and variance for the harmonic oscillator: (a,b) at

t ¼ 1; (c,d) at t ¼ 20; and (e,f) at t ¼ 100.
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t ¼ Ut=b. The expressions for the aerodynamic force and moment coefficients, CLðtÞ and CM ðtÞ are given by
Fung [23] as

CLðtÞ ¼ pðx00 � aha00 þ a0Þ þ 2p að0Þ þ x0ð0Þ þ
1

2
� ah

� �
a0ð0Þ

� �
fðtÞ

þ 2p
Z t

0

fðt� sÞ a0ðsÞ þ x00ðsÞ þ
1

2
� ah

� �
a00ðsÞ

� �
ds, ð14Þ

CMðtÞ ¼ p
1

2
þ ah

� �
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1

2
� ah

� �
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þ p
1

2
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� �Z t
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fðt� sÞ a0ðsÞ þ x00ðsÞ þ
1

2
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� �
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� �
ds
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p
2

ahðx
00
� aha00Þ �

1

2
� ah

� �
p
2
a0 �

p
16

a00, ð15Þ

where the elastic axis is located at a distance ahb from mid-chord, the mass center is located at a distance xab

from the elastic axis and fðtÞ is the Wagner function

fðtÞ ¼ 1� c1e
�e1t � c2e

�e2t, (16)

with the constants c1 ¼ 0:165, c2 ¼ 0:335, e1 ¼ 0:0455 and e2 ¼ 0:3 given by Jones [31]. Based on
Eqs. (12)–(16), a set of first-order ordinary differential equations for the motion of the airfoil is derived in
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Ref. [30]. Following Refs. [14,30], these equations are integrated numerically until t ¼ 2000 using the explicit
fourth-order Runge–Kutta method with a time step of Dt ¼ 0:1, which is approximately 1=256 of the smallest
period.

The following parameter values are used: m ¼ 100, ah ¼ �0:5, xa ¼ 0:25, ra ¼ 0:5 and za ¼ zx ¼ 0, as in
Refs. [14,30]. For a hard spring model in the pitch dof (ba40) the system exhibits a LCO [32]. The nonlinear
torsional spring stiffness parameter is set to ba ¼ 3. The ratio of uncoupled plunging and pitching modes
natural frequencies ō is assumed to be uncertain described by a lognormal distribution. The mean value
mō ¼ 0:2 is chosen to be equal to the deterministic value used in Refs. [14,30] with a coefficient of variation of
CVō ¼ 10%. The effect of the input uncertainty on the mean and variance of the pitch angle aðoÞ and its
bifurcation plot is considered. Results for the plunge deflection zðoÞ are qualitatively similar.

The bifurcation parameter U� is set to 6:6 as in Ref. [14]. PCLCO is applied with N ¼ 3 and the results are
compared to those of PC, and MC based on 1000 uniformly sampled realizations. To cancel the effect of the
finite number of MC samples, the mean and variance of PCLCO and PC are determined based on the same
sampling in their response surface approximation as MC. The collocation samples of PCLCO are shown in
Fig. 9. The samples show a periodic response with a transient behavior for to100. The uncertainty in ō affects
the frequency and the amplitude of the samples. The periodic reconstruction of the time series samples by
PCLCO, see (7), is given by the dashed lines. The periodic oscillations for t4100 are exactly represented. The
transient behavior of the samples for to100 is not modeled in the periodic reconstruction.

In Fig. 10 the mean pitch angle maðtÞ is given. It shows a transient behavior for to100 after which the mean
develops a decaying oscillation. PCLCO results in an excellent match of the long-term MC results. The mean
for to100 is not accurately resolved by PCLCO, since it does not model the transient part of the deterministic
samples. PC gives an accurate approximation of the mean for to800. For higher values of the non-
dimensional time t, PC does not predict the asymptotic damped oscillation.

The variance of the pitch angle s2aðtÞ is given in Fig. 11. The variance is an oscillating increasing function of
t until t 	 1000 at which it reaches a steady asymptotic value of approximately s2a ¼ 1:96� 10�2. PCLCO
gives an accurate approximation of the steady behavior for t41000. The transient behavior of the variance for
t 2 ½100; 1000� is also accurately resolved, since the stochastic transient behavior is due to the deterministic
initial condition and not due to the transient behavior of the deterministic samples. The variance for to100
for which the deterministic samples are in their transient is not accurately resolved by PCLCO. However, the
transient of the deterministic samples takes less than one-tenth of the stochastic transient part. PC does give an
accurate approximation for to100, but it fails for long-term integration for t4500.

So, PCLCO and PC seem complementary, where a PC post-processing should be used for the initial time
interval in which the deterministic samples exhibit transient behavior. To the long-term periodic behavior of
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the deterministic samples after their transient, PCLCO post-processing should be applied. This combined
approach is demonstrated in the next test problem.

In Fig. 12 the stochastic bifurcation plot of the pitch angle aðt;oÞ is given in terms of the amplitude AaðoÞ at
t ¼ 2000 with U� as bifurcation parameter and ō uncertain. The PCLCO approximation of the mean
amplitude mAa

and uncertainty bars based on the 90% confidence interval are shown. The results are
compared to the deterministic bifurcation plot for ō ¼ mō. The stochastic bifurcation plot is shown in this
way, since it is of practical interest to visualize the distortion of the deterministic bifurcation as a result of the
input uncertainty. A supercritical Hopf bifurcation [33] is observed in the deterministic bifurcation plot
between U� ¼ 6:2 and 6.3, which is the transition of a damped solution to a limit cycle oscillation. The
damped oscillation of the response aðt;oÞ below the bifurcation point results in very small amplitudes at
t ¼ 2000.

The interpretation of the bifurcation of the stochastic system is more complex in terms of D-bifurcation
and P-bifurcation [34,35]. D- or dynamical-bifurcation is concerned with the loss of stability of an equili-
brium point at a qualitative change of its eigenvalues or largest Lyapunov exponent. Phenomenological- or
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P-bifurcation is associated with a qualitative change in the output probability distribution. For a deterministic
system the D- and P-bifurcation point coincide.

The stochastic problem is here solved using PCLCO based on N ¼ 3 samples, ōi ¼ f0:172; 0:204; 0:243g,
and a global polynomial interpolation of the response. Near the bifurcation point the true response surface
contains a discontinuity in the first derivative. This kink is not resolved as a discontinuity by the global
polynomial approximation. Near the bifurcation point the method gives approximate results, which capture
the qualitative bifurcation behavior correctly.

The mean of the amplitude AaðoÞ and the 90% scatter given in Fig. 12 are functionals of probability space.
The bifurcation behavior of these functionals appears to be consistent with a deterministic bifurcation. Below
U� ¼ 6:0 PCLCO resolves that both the mean and the 90% interval vanish. The uncertainty in the ratio of
natural frequencies ō has no effect on the pre-bifurcation amplitudes AaðoÞ.

Between U� ¼ 6:0 and 6.1, one of the three time-series aðt; ō3Þ, for the sample ō3 ¼ 0:243, bifurcates from a
damped oscillation to a LCO. This results in a bifurcation in the mean and the 90% interval between U� ¼ 6:0
and 6.1. The uncertainty in ō has reduced the flutter point from U� 2 ½6:2; 6:3� in the deterministic case to
U� 2 ½6:0; 6:1�. For U�46:1 the amount of uncertainty in AaðoÞ increases rapidly until it starts to decrease at
U� ¼ 6:4 to an uncertainty bar with a length of approximately 0:07 for U�46:8. The mean value mAa

differs
significantly from the deterministic case in the domain U� 2 ½6:0; 6:5� around the deterministic bifurcation
point.

In addition to the bifurcation of the mean and the 90% interval, the probability density function
(PDF) of the amplitude AaðoÞ exhibits a P-bifurcation. Because near the bifurcation point the approach gives
qualitively correct answers, the qualitative P-bifurcation behavior of the PDF of AaðoÞ is described below.
Below U� ¼ 6:0 the PDF is a delta function in the origin. After the bifurcation point of aðt; ō3Þ in U� 2

½6:0; 6:1� the PDF has a maximum in the origin and decays monotonically for larger AaðoÞ. This P-bifurcation
point coincides with the bifurcation of the mean of AaðoÞ and the 90% interval. The PDF shows a bell-shape
with a maximum at a positive AaðoÞ value after the bifurcation of the second sample aðt; ō2Þ, with ō2 ¼ 0:204,
in U� 2 ½6:2; 6:3�.
3.3. Flow past an elastically mounted cylinder

The two-dimensional fluid-structure interaction problem of an elastically mounted circular cylinder in a
laminar Navier–Stokes flow is considered in this section, see Fig. 13. The gas flow around the cylinder with
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diameter d is governed by the two-dimensional compressible Navier–Stokes equations [36]:

qr
qt
þ

qru

qx
þ

qrv

qy
¼ 0, (17)

r
Du

Dt
¼ �

qp

qx
þ

qtxy

qy
, (18)

r
Dv

Dt
¼ �

qp

qy
þ

qtxy

qx
, (19)

r
DE
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q
qx
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þ

q
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qT

qy

� �
�

qpu

qx
�

qpv

qy
þ

qtxyv

qx
þ

qtxyu

qy
(20)

with density r, velocity components u and v in the x-direction and y-direction, respectively, static pressure p,
total energy E, Newtonian viscous stress txy ¼ mðqv=qxþ qu=qyÞ, dynamic viscosity m, and thermal
conductivity k. The ideal gas equation of state is given by p ¼ rRT , with specific gas constant R. The
cylinder is only free to move in the cross flow y-direction. The structural stiffness is modeled by a linear spring:

q2ycyl

qt2
þ o2

nycyl ¼ F yðtÞ, (21)

where ycylðt;oÞ is the y-position of the center of the cylinder, on ¼
ffiffiffiffiffiffiffi
0:1
p

	 0:316 is the angular natural
frequency of the structure, and FyðtÞ is the y-component of the resulting pressure force of the flow onto the
structure given by

F yðtÞ ¼ �

Z
qDcyl

pðx; y; tÞncyl 
 ey ds, (22)

with ncyl the outward pointing normal of the cylinder surface qDcyl and ey the unit vector in the y-direction.
The field Eqs. (17)–(20) are discretized on a circular spatial domain D with diameter 40d using a second-

order finite volume method on a grid of 1:2� 104 volumes. An arbitrary Lagrangian–Eulerian formulation is
employed to couple the fluid mesh with the movement of the structure. Time integration is performed using a
BDF-2 method with a stepsize of Dt ¼ 0:25 until t ¼ 250. The boundary conditions on the surface of the
cylinder qDcyl are u ¼ 0 and v ¼ qycyl=qt. The uniform undisturbed flow conditions u ¼ V and v ¼ 0 are
imposed on the outer boundary of the fluid domain qD. Initially, the flow field is uniform and the cylinder is at
rest with an initial deflection of ycyl ¼ 0:5d with respect to its equilibrium position.

The undisturbed velocity in the x-direction, V , is assumed to be uncertain described by a truncated
lognormal distribution with a coefficient of variation of CVV ¼ 10%. The mean value of the velocity mV ¼ 0:3
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corresponds to a Reynolds number of Re ¼ 1000. The truncated lognormal distribution limits the variation of
the Reynolds number to the range for which the frequency of the periodic fluid motion is typically given by a
Strouhal number of St ¼ fd=V ¼ 0:2. This corresponds for mV to an angular frequency of oflow ¼ 0:38. For
this range the cylinder exhibits a period-1 oscillation. The variation in V affects the frequency of the vortex
pattern behind the cylinder and, therefore, influences the frequency of the motion of the cylinder.

A combination of PCLCO and PC is used to solve for the stochastic response of the cylinder in the whole-
time domain. For the short-term integration in the transient part of the deterministic time series PC is applied.
PCLCO is employed for resolving the stochastic transient behavior and the long-term stochastic response. In
Figs. 14 and 15 the evolution of the mean and the variance of the cylinder displacement yðt;oÞ is shown. To
demonstrate the convergence of the combined approach for short-term and long-term integration, the
approximations for N ¼ 2 to 4 are shown. PC is applied to the deterministic samples in an initial time interval
starting at t ¼ 0. From the time where the PCLCO and PC approximations match, the PCLCO approach is
applied. These points are in Figs. 14 and 15 denoted by the symbols.

A similar behavior of the mean and the variance can be seen as for the previous test problem. The mean is a
decaying oscillation after the transient part of the deterministic solves, see Fig. 14. The variance approaches an
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asymptotic value of approximately 9:6� 10�2 after an oscillatory stochastic transient, which extends beyond
the deterministic transient, see Fig. 15.

In the initial time interval PC gives a converged solution already for the low order approximations, which is
demonstrated by the coinciding approximations for N ¼ f2; 3; 4g. PCLCO also shows a converging solution,
especially for the long term integration results t4150. In the stochastic transient t 2 ½50; 150� the results of
PCLCO seem to converge less rapidly.

4. Conclusions

A PC formulation for modeling the long-term stochastic behavior of LCOs is proposed. In PCLCO, PC is
applied to a time-independent parametrization of the periodic time series at the collocation points in
probability space. Due to its independence of time the PCLCO approximation is capable of modeling the long-
term stochastic behavior of dynamic systems. For LCO a suitable parametrization of the periodic
deterministic solutions consists of the frequency, relative phase, amplitude, reference value and normalized
period. PCLCO is applied to period-1 oscillations with one main frequency subject to an uncertain parameter.
Numerical results are presented for the harmonic oscillator, an airfoil flutter model and the flow around an
elastically mounted cylinder.

It has been demonstrated that standard polynomial chaos computed using PC is initially accurate, but that
it is unable to predict the long-term stochastic behavior as its accuracy depends strongly on time. PCLCO
accurately predicts the long-term stochastic response and the stochastic transient solution caused by
deterministic initial conditions. The accuracy of the PCLCO approximation of the mean and the variance is
shown to be independent of time. In practice, the error can slightly increase with time due to numerical
integration errors. PCLCO does however not resolve the stochastic solution in the transient part of the
deterministic response, since it does reconstruct the periodic behavior of the collocation samples. PCLCO and
PC therefore seem complementary, where PC should be used to model the stochastic response for the initial
time interval in which the deterministic functions are in their transient part. For resolving the long-term
stochastic solution after the transient behavior of the deterministic samples, PCLCO should be employed.
Further testing of the method with actually measured data scatter is recommended to evaluate its properties
in, for example, the aeronautical application of flutter suppression in wing structures. The extension of the
method beyond the current assumptions requires further attention.
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